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Abstract. The known Holstein–Primakoff and Dyson realizations forgl(n+1), n = 1, 2, . . . ,
in terms of Bose operators (Okubo S 1975J. Math. Phys.16 528) are generalized to the class
of the Lie superalgebrasgl(m/n+ 1) for any n andm. Formally the expressions are the same
as forgl(m+ n+ 1), however, both Bose and Fermi operators are involved.

Recently an analogue of the Dyson (D) and of the Holstein–Primakoff (H–P) realization for
all Lie superalgebrassl(1/n) [1] was given. In the present paper the results are extended
to the case of the Lie superalgebrasgl(m/n+ 1) for anym andn.

Initially the H–P and the D realizations were given forsl(2) [2, 3]. The generalization
for gl(n) is due to Okubo [4]. The extension to the case of quantum algebras is available so
far only for sl(2) [5] andsl(3) [6]. To the best of our knowledge, apart from [1] other results
on H–P or D realizations for Lie superalgebras have not been published in the literature so
far.

The motivation in the present work stems from the various applications of the Holstein–
Primakoff and of the Dyson realizations in theoretical physics. Beginning with [2] and [3]
the H–P and D realizations were constantly used in condensed matter physics. Some other
early applications can be found in the book of Kittel [7] (more recent results are contained
in [8]). For applications in nuclear physics see [9, 10] and the references therein, but there
are, certainly, several other publications. In view of the importance of the Lie superalgebras
for physics, one could expect that extensions of the Dyson and of the Holstein–Primakoff
realizations toZ2-graded algebras may be of interest too.

We recall the H–P realization ofgl(n + 1). The Weyl generatorsEAB , A,B =
1, . . . , n+ 1, of gl(n+ 1) satisfy the commutation relations:

[EAB,ECD] = δBCEAD − δADECD. (1)

Let b±i , n = 1, . . . , n, ben pairs of Bose creation and annihilation operators (CAOs),

[b−i , b
+
j ] = δij [b+i , b

+
j ] = [b−i , b

−
j ] = 0 i, j = 1, . . . , n. (2)
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Then for any non-negative integerp, p ∈ Z+, the H–P realizationπ of gl(n+1) is defined
on the generators as follows [4]:

π(Eij ) = b+i b−j i, j = 1, . . . , n (3)

π(Ei,n+1) = b+i

√√√√p − n∑
k=1

b+k b
−
k π(En+1,i ) =

√√√√p − n∑
k=1

b+k b
−
k b
−
i

π(En+1,n+1) = p −
n∑
k=1

b+k b
−
k . (4)

(3a) only gives the known Jordan–Schwinger (J–S) realization ofgl(n) in terms ofn pairs
of Bose CAOs. Therefore, the H–P (and also the D) realizations allow one to express the
higher rank algebragl(n+ 1) also throughn pairs of Bose CAOs.

Let us fix some notation. Unless otherwise statedA,B,C,D = 1, 2, . . . , m+n+1 and
i, j, k, l ∈ {1, 2, . . . , m+ n = M} ≡ M ; [x, y] = xy − yx, {x, y} = xy + yx; Z2 = {0̄, 1̄};
〈A〉 = 1̄, if A 6 m; 〈A〉 = 0̄, if A > m.

We proceed to definegl(m/n + 1) in a representation independent way [11]. Let
U be the (free complex) associative unital (= with unity) algebra of the indeterminants
{EAB |A,B = 1, . . . ,M + 1} subject to the relations

EABECD − (−1)(〈A〉+〈B〉)(〈C〉+〈D〉)ECDEAB = δBCEAD − (−1)(〈A〉+〈B〉)(〈C〉+〈D〉)ECB. (5)

Introduce aZ2-grading onU , induced from

deg(EAB) = 〈A〉 + 〈B〉. (6)

Then U is an (infinite-dimensional) associative superalgebra, which is also a Lie
superalgebra (LS) with respect to the supercommutator [[, ]] defined between every two
homogeneous elementsx, y ∈ U as

[[x, y]] = xy − (−1)deg(x)deg(y)yx. (7)

Its finite-dimensional subspace

lin.env.{EAB, [[EAB,ECD]] |A,B,C,D = 1, . . . , m+ n+ 1} ⊂ U (8)

gives the Lie superalgebragl(m/n + 1); U = U [gl(m/n + 1)] is its universal enveloping
algebra. The relations (4) are the supercommutation relations ongl(m/n+ 1):

[[EAB,ECD]] = δBCEAD − (−1)(〈A〉+〈B〉)(〈C〉+〈D〉)ECB. (9)

One can certainly definegl(m/n + 1) in its matrix representation. In that caseEAB is a
(m + n + 1) × (m + n + 1) matrix with one on the intersection of theAth row andBth
column and zero elsewhere.

The Dyson and the Holstein–Primakoff realizations are different embeddings of
gl(m/n+ 1) into the algebraW(m/n) of all polynomials ofm pairs of Fermi CAOs andn
pairs of Bose CAOs. The precise definition ofW(m/n) is the following. LetA±i , i ∈ M
be Z2-graded indeterminates:

deg(A±i ) = 〈i〉. (10)

ThenW(m/n) is the associative unital superalgebra of allA±i , subject to the relations

[[A−i , A
+
j ]] = δij [[A+i , A

+
j ]] = [[A−i , A

−
j ]] = 0. (11)

With respect to the supercommutator (7)W(m/n) is also a Lie superalgebra.
From (11) one concludes thatA±1 , . . . , A

±
m are Fermi CAOs, which are odd variables;

A±m+1, . . . , A
±
m+n are Bose CAOs, which are even. The Bose operators commute with the

Fermi operators.
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Proposition 1 (Dyson realization). The linear mapϕ : gl(m/n+ 1)→ W(m/n), defined
on the generators as

ϕ(Eij ) = A+i A−j i, j = 1, . . . ,M (12a)

ϕ(Ei,M+1) = A+i ϕ(EM+1,i ) =
(
p −

M∑
k=1

A+k A
−
k

)
A−i

ϕ(EM+1,M+1) = p −
M∑
k=1

A+k A
−
k (12b)

is an isomorphism ofgl(m/n+ 1) into W(m/n) for any numberp.

Proof. The imagesϕ(EAB) are linearly independent inW(m/n). It is straightforward to
verify that they preserve the supercommutation relations (9),

[[ϕ(EAB), ϕ(ECD)]] = δBCϕ(EAD)− (−1)(〈A〉+〈B〉)(〈C〉+〈D〉)ϕ(ECB). (13)

In the intermediate computations the following relation is useful

[N,A±i ] = ±A±i where N =
M∑
k=1

A+k A
−
k . (14)

The Dyson realization defines an infinite-dimensional representation ofgl(m/n+1) (for
m > 0) in the Fock spaceF(m/n) with orthonormed basis

|K) ≡ |k1, . . . , kM) = (A+1 )
k1 . . . (A+M)

kM

√
k1! . . . kM !

|0〉 k1, . . . , km = 0, 1;
km+1, . . . , kM ∈ Z+. (15)

Let |K)±i (respectively|K)i,−j ) be a vector obtained from|K) after a replacement ofki
with ki ± 1 (respectivelyki → ki + 1, kj → kj − 1). The transformations of the basis (15)
under the action of the CAOs read

A+i |K) = (−1)〈i〉(k1+···+ki−1)
√

1+ (−1)〈i〉ki |K)i
A−i |K) = (−1)〈i〉(k1+···+ki−1)

√
ki |K)−i . (16)

As a consequence one obtains the transformations of thegl(m/n+ 1) moduleF(m/n)

ϕ(Ei,M+1)|K) = (−1)〈i〉(k1+···+ki−1)
√

1+ (−1)〈i〉ki |K)i (17a)

ϕ(EM+1,i )|K) = (−1)〈i〉(k1+···+ki−1)

(
p + 1−

M∑
j=1

kj

)√
ki |K)−i (17b)

ϕ(EM+1,M+1)|K) =
(
p + 1−

M∑
j=1

kj

)
|K) (17c)

ϕ(Eii)|K) = ki |K) (17d)

ϕ(Eij )|K) = (−1)〈i〉(k1+···+ki−1)+〈j〉(k1+···+kj−1)
√
kj (1+ (−1)〈i〉ki)|K)−j,i i < j (17e)

ϕ(Eij )|K) = (−1)〈i〉(k1+···+ki−1+1)+〈j〉(k1+···+kj−1)
√
kj (1+ (−1)〈i〉ki)|K)−j,i i > j. (17f)

If p is not a positive integer,p /∈ N, F(m/n) is a simplegl(m/n + 1) module. For any
positive integerp, p ∈ N, the representation ofgl(m/n+1) in F(m/n) is indecomposable.
The subspace

F(p;m/n)inv = lin.env.{|K)|k1+ · · · + kM > p} ⊂ F(m/n) (18)
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is an infinite-dimensional subspace, invariant with respect togl(m/n+1). The factor spaces

F(p;m/n)0 ≡ F(m/n)/F (p;m/n)inv

= lin.env.{|K)|p > k1+ · · · + kM} p = 1, 2, . . . (19)

are finite-dimensional irreduciblegl(m/n+ 1) modules.
The advantage of the Dyson realization (12) is its simplicity. Its disadvantage is that

the Fock representation ofgl(m/n + 1) is not unitarizable. The latter, the representation
to be unitarizable, is usually required for physical reasons. We recall that a representation
ϕ of a (super)algebraL in a Hilbert spaceV is unitarizable with respect to an antilinear
anti-involutionω : L→ L and a scalar product( , ) in V , if

(ϕ(a)x, y) = (x, ϕ(ω(a))y) ∀a ∈ L, ∀x, y ∈ V. (20)

The Dyson representation inF(m/n) is not unitarizable with respect to the ‘compact’ anti-
involution

ω(EAB) = EBA A,B = 1, . . . ,M + 1. (21)

The factor modulesF0(p;m/n), p ∈ N, however do carry unitarizable representations for
any p ∈ N. In order to show this it is convenient to introduce a new basis within each
F0(p;m/n), which we postulate to be orthonormed

|K〉 =
√√√√(p − M∑

j=1

kj

)
!|K). (22)

In this basis the transformation relations (17) read

ϕ(Ei,M+1)|K〉 = (−1)〈i〉(k1+···+ki−1)

√√√√(1+ (−1)〈i〉ki)
(
p −

M∑
j=1

kj

)
|K〉i (23a)

ϕ(EM+1,i )|K〉 = (−1)〈i〉(k1+···+ki−1)

√√√√ki(p + 1−
M∑
j=1

kj

)
|K〉−i (23b)

ϕ(EM+1,M+1)|K〉 =
(
p + 1−

M∑
j=1

kj

)
|K〉 (23c)

ϕ(Eii)|K〉 = ki |K〉 (23d)

ϕ(Eij )|K〉 = (−1)〈i〉(k1+···+ki−1)+〈j〉(k1+···+kj−1)
√
kj (1+ (−1)〈i〉ki)|K〉−j,i i < j (23e)

ϕ(Eij )|K〉 = (−1)〈i〉(k1+···+ki−1+1)+〈j〉(k1+···+kj−1)
√
kj (1+ (−1)〈i〉ki)|K〉−j,i i > j. (23f)

It is straightforward to check that (20) holds with respect to the anti-involution (21). Hence
the representation ofgl(m/n + 1) is unitarizable within every spaceF0(p;m/n), p ∈ N.
The next proposition is closely related to the result we have just obtained. �

Proposition 2 (Holstein–Primakoff realization). The linear mapπ : gl(m/n + 1) →
W(m/n), defined on the generators as

π(Eij ) = A+i A−j i, j = 1, . . . ,M (24a)
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π(Ei,M+1) = A+i

√√√√p − M∑
j=1

A+j A
−
j π(EM+1,i ) =

√√√√p − M∑
k=1

A+k A
−
k A
−
i

π(EM+1,M+1) = p −
M∑
k=1

A+k A
−
k (24b)

is an isomorphism ofgl(m/n+ 1) into W(m/n) for any positive integerp.

Proof. Acting with thegl(m/n + 1) generators on the basis (15) one obtains the same
transformation relations (23) with the only difference that everywhere in (23),|K〉 have to
be replaced with|K). The proof can be carried out also purely algebraically, using the
supercommutation relations (11). To this end the following formula is useful

f (N)A±i = A±i f (N ± 1) N =
M∑
j=1

A+j A
−
j (25)

wheref (z) is any (analytical) function inz.
The representationπ is defined in the entire Fock space. Observe that with respect

to π(EAB),A,B = 1, . . . ,M + 1, the Fock space resolves into a direct sum of two
invariant (and moreover irreducible) subspaces (which was not the case with the Dyson
representation):

F(p;m/n)0 = lin.env.{|K)|p > k1+ · · · + kM}
F(p;m/n)inv = lin.env.{|K)|k1+ · · · + kM > p}. (26)

This property is due to the factors
√
p −∑M

j=1 kj and
√
p + 1−∑M

j=1 kj in (23a) and
(23b), respectively.

In the casem = 0 the Holstein–Primakoff realization (24) reduces to the Holstein–
Primakoff realization (3) ofgl(n + 1) in terms of only Bose operators. Replacing in (24)
all A±i with Bose CAOs, one obtains the H–P realization ofgl(m+n+1). The casen = 0
yields a Fermi realization of the Lie superalgebrasgl(m/1). Its restriction tosl(m/1)
coincides with the results announced in [1]. �

Let us note in conclusion that explicit expressions for all finite-dimensional irreducible
representations ofgl(m/1) and a large class of representations ofgl(m/n+1) are available
[12]. They have been generalized also to the quantum case [13]. The formulae are, however,
extremely involved. The Dyson and the Holstein–Primakoff representations lead to a small
part of all representations. Their description is, however, simple and it is realized in familiar
for physics Fock spaces.
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